Votre version du STHS est obsolète! Veuillez mettre à jour votre version du STHS!
Connexion

Milwaukee
GP: 82 | W: 42 | L: 34 | OTL: 6 | P: 90
GF: 260 | GA: 269 | PP%: 20.58% | PK%: 82.38%
DG: | Morale : 50 | Moyenne d’équipe : N/A
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
San Jose
49-25-8, 106pts
2
FINAL
1 Milwaukee
42-34-6, 90pts
Team Stats
W2StreakW1
24-15-2Home Record22-16-3
25-10-6Away Record20-18-3
8-1-1Last 10 Games5-5-0
3.77Buts par match 3.17
3.20Buts contre par match 3.28
18.69%Pourcentage en avantage numérique20.58%
81.25%Pourcentage en désavantage numérique82.38%
Wilkes-Barre/Scranton
35-41-6, 76pts
2
FINAL
3 Milwaukee
42-34-6, 90pts
Team Stats
OTL1StreakW1
21-17-3Home Record22-16-3
14-24-3Away Record20-18-3
5-4-1Last 10 Games5-5-0
3.12Buts par match 3.17
3.49Buts contre par match 3.28
18.59%Pourcentage en avantage numérique20.58%
80.99%Pourcentage en désavantage numérique82.38%
Meneurs d'équipe
Buts
Taylor Beck
31
Passes
Micheal Ferland
40
Points
Vladislav Kamenev
66
Plus/Moins
Radim Simek
12
Victoires
Ondrej Pavelec
28
Pourcentage d’arrêts
Ondrej Pavelec
0.918

Statistiques d’équipe
Buts pour
260
3.17 GFG
Tirs pour
2649
32.30 Avg
Pourcentage en avantage numérique
20.6%
71 GF
Début de zone offensive
40.8%
Buts contre
269
3.28 GAA
Tirs contre
2838
34.61 Avg
Pourcentage en désavantage numérique
82.4%%
65 GA
Début de la zone défensive
41.7%
Informations de l'équipe

Directeur général
EntraîneurRick Tocchet
DivisionCentrale
ConférenceConference ouest
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,272
Billets de saison300


Informations de la formation

Équipe Pro18
Équipe Mineure20
Limite contact 38 / 50
Espoirs51


Historique d'équipe

Saison actuelle42-34-6 (90PTS)
Historique84-68-20 (0.488%)
Apparitions en séries éliminatoires 0
Historique en séries éliminatoires (W-L)-
Coupe Stanley0


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Vladislav Kamenev (R)XXX100.00773289828972867892757473734444645000241800,000$
2Taylor BeckXX100.00673298698978946973667272715353415000303800,000$
3Linden VeyXX100.00642996757477996784666865715648405000293750,000$
4Brett RitchieX100.00894075739774856769676860745755495000281775,000$
5Antoine RousselXX100.00764767726868916482676467595453315000311700,000$
6Nick CousinsXXX100.00693477787879877276687360865242505000272900,000$
7Alan QuineXXX100.00663086777779847385717265835344565000281800,000$
8Micheal FerlandXX100.00774474768783787371717264795771595000293875,000$
9Jordan NolanXX100.00614291638569876162626366725857355000321600,000$
10Christian Fischer (R)XX100.00883091758978756970677071754545695000242900,000$
11Vladimir SobotkaXX100.00823972577165846871657172749593105000331775,000$
12Jason DemersX100.006741866579808355505645907571643550003311,265,000$
13Radim SimekX100.009030887680798046504546877559594950002811,075,000$
14Matt HunwickX100.006526896573768148504543907577742350003511,050,000$
15Joe MorrowX100.00683275778084875750595189745150505000281600,000$
16Brett KulakX100.00723376778887875451535388695152595000272800,000$
Rayé
MOYENNE D’ÉQUIPE100.0074358372827786646863637474585745500
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Ondrej Pavelec99.00608184897898969998838686884050003311,110,000$
2Thomas Greiss100.00588182857595989999808487913050003521,250,000$
Rayé
MOYENNE D’ÉQUIPE99.505981838777979799998285879035500
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Rick Tocchet81757780828585USA5711,500,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Vladislav KamenevMilwaukee (NSH)C/LW/RW5629376610180541632566915811.33%7121221.65714215019021361294255.83%172300111.0901000736
2Micheal FerlandMilwaukee (NSH)LW/RW672340632642095682136116910.80%9130019.4181321452350006942054.42%14700100.9701013531
3Christian FischerMilwaukee (NSH)C/RW78223759-4660155113230621569.57%12147318.8951318522270002633247.88%181700000.8001000432
4Alan QuineMilwaukee (NSH)C/LW/RW81243357-520046106251731829.56%8147518.227714532260001374349.21%38000000.7701000454
5Taylor BeckMilwaukee (NSH)LW/RW78312455-818044671864614416.67%25137217.59971653208000045250.54%9300010.8000000224
6Joe MorrowMilwaukee (NSH)D78154055-1446098821494310710.07%125183323.51917261012950002255210.00%000000.6000000042
7Brett KulakMilwaukee (NSH)D81153954-10120013581185631098.11%121190523.531017271073070002262210.00%000100.5700000215
8Radim SimekMilwaukee (NSH)D8118355312112016470136387513.24%128174921.6071320752511012253200.00%000000.6100000233
9Nick CousinsMilwaukee (NSH)C/LW/RW8118314911361053114204531708.82%7137416.97213176400011124050.23%106500000.7101011134
10Jason DemersMilwaukee (NSH)D815354094620308610437764.81%142177721.9421012592470113288110.00%000000.4501013211
11Brett RitchieMilwaukee (NSH)RW81162036686012058171411379.36%4116514.38000113000021151.55%9700000.6200000021
12Antoine RousselMilwaukee (NSH)C/LW811519343341092112178371148.43%18137116.940000100092106151.27%47400000.5000002241
13Matt HunwickMilwaukee (NSH)D8182028-6740965459173013.56%136128215.83011290002127200.00%000000.4400000132
14Vladimir SobotkaMilwaukee (NSH)LW/RW609182766601134813741916.57%6119119.8631013332060112983045.75%15300000.4502000012
15Linden VeyMilwaukee (NSH)C/RW8181725-62003810311230737.14%33125915.55000140002730154.43%71100000.4000000001
16Jordan NolanMilwaukee (NSH)LW/RW8115631001723378162.70%84805.930000000031821044.44%2700000.2500000000
Statistiques d’équipe totales ou en moyenne122725745070798366013501348260871918079.85%7892222518.11691231926492491336432197421551.49%668700320.6408039323839
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Ondrej PavelecMilwaukee (NSH)47281530.9182.6728106412515230300.75084620513
2Thomas GreissMilwaukee (NSH)26111230.9122.99154501778710000.00%22648131
Statistiques d’équipe totales ou en moyenne73392760.9162.784355652022394030107268644


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Waiver Possible Contrat Type Salaire actuel Salaire restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Alan QuineMilwaukee (NSH)C/LW/RW281993-02-25No204 Lbs6 ft0NoNoNoNo1Pro & Farm800,000$0$0$NoLien
Antoine RousselMilwaukee (NSH)C/LW311989-11-21No192 Lbs6 ft0NoNoNoNo1Pro & Farm700,000$0$0$NoLien
Brett KulakMilwaukee (NSH)D271994-01-06No189 Lbs6 ft2NoNoNoNo2Pro & Farm800,000$0$0$No800,000$Lien
Brett RitchieMilwaukee (NSH)RW281993-06-01No221 Lbs6 ft4NoNoNoNo1Pro & Farm775,000$0$0$NoLien
Christian FischerMilwaukee (NSH)C/RW241997-04-15 08:45:38Yes214 Lbs6 ft2NoNoNoNo2Pro & Farm900,000$0$0$No900,000$Lien
Jason DemersMilwaukee (NSH)D331988-06-09No204 Lbs6 ft1NoNoNoNo1Pro & Farm1,265,000$0$0$NoLien
Joe MorrowMilwaukee (NSH)D281992-12-09No200 Lbs6 ft0NoNoNoNo1Pro & Farm600,000$0$0$NoLien
Jordan NolanMilwaukee (NSH)LW/RW321989-06-23No230 Lbs6 ft3NoNoNoNo1Pro & Farm600,000$0$0$NoLien
Linden VeyMilwaukee (NSH)C/RW291991-07-17No198 Lbs6 ft0NoNoNoNo3Pro & Farm750,000$0$0$No750,000$750,000$Lien
Matt HunwickMilwaukee (NSH)D351985-08-05No203 Lbs5 ft11NoNoNoNo1Pro & Farm1,050,000$0$0$NoLien
Micheal FerlandMilwaukee (NSH)LW/RW291992-04-20No211 Lbs6 ft2NoNoNoNo3Pro & Farm875,000$0$0$No875,000$875,000$Lien
Nick CousinsMilwaukee (NSH)C/LW/RW271993-07-20No192 Lbs5 ft10NoNoNoNo2Pro & Farm900,000$0$0$No900,000$Lien
Ondrej PavelecMilwaukee (NSH)G331987-08-31 05:37:02No224 Lbs6 ft2NoNoNoNo1Pro & Farm1,110,000$0$0$No
Radim SimekMilwaukee (NSH)D281992-09-20 12:10:43No200 Lbs5 ft11NoNoNoNo1Pro & Farm1,075,000$0$0$NoLien
Taylor Beck (contrat à 1 volet)Milwaukee (NSH)LW/RW301991-05-13No210 Lbs6 ft2NoNoYesYes3Pro & Farm800,000$8,000$0$No800,000$800,000$Lien
Thomas GreissMilwaukee (NSH)G351986-01-29 23:37:02No221 Lbs6 ft0NoNoNoNo2Pro & Farm1,250,000$0$0$No1,250,000$
Vladimir SobotkaMilwaukee (NSH)LW/RW331987-07-02No208 Lbs5 ft11NoNoNoNo1Pro & Farm775,000$0$0$No
Vladislav KamenevMilwaukee (NSH)C/LW/RW241996-08-12Yes198 Lbs6 ft2NoNoNoNo1Pro & Farm800,000$0$0$NoLien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
1829.67207 Lbs6 ft11.56879,167$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Vladimir SobotkaMicheal Ferland32023
2Alan QuineChristian FischerTaylor Beck32023
3Antoine RousselNick CousinsBrett Ritchie31122
4Jordan NolanLinden Vey5122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Brett KulakJoe Morrow36023
2Jason DemersRadim Simek34023
3Matt HunwickLinden Vey30122
4Brett KulakJoe Morrow0122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Vladimir SobotkaMicheal Ferland60005
2Alan QuineChristian FischerTaylor Beck40005
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Brett KulakJoe Morrow60005
2Jason DemersRadim Simek40005
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Antoine RousselJordan Nolan60140
2Linden VeyNick Cousins40140
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Brett KulakJoe Morrow60140
2Jason DemersRadim Simek40140
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Nick Cousins60122Brett KulakJoe Morrow60122
2Vladimir Sobotka40122Jason DemersRadim Simek40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Nick CousinsVladimir Sobotka60023
2Micheal FerlandChristian Fischer40023
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Brett KulakJoe Morrow60023
2Jason DemersRadim Simek40023
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Vladimir SobotkaMicheal FerlandBrett KulakJoe Morrow
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Vladimir SobotkaMicheal FerlandBrett KulakJoe Morrow
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Nick Cousins, Brett Ritchie, Antoine RousselNick Cousins, Brett RitchieAntoine Roussel
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Matt Hunwick, Jason Demers, Radim SimekMatt HunwickJason Demers, Radim Simek
Tirs de pénalité
, Vladimir Sobotka, Micheal Ferland, Christian Fischer, Alan Quine
Gardien
#1 : Ondrej Pavelec, #2 : Thomas Greiss


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Abbotsford420011001899210010009632100010093670.8751833510074998071368609218344410430415919526.32%18288.89%11487305248.72%1479312147.39%655131149.96%1917128119726221072533
2Bakersfield522010001821-321100000770311010001114-360.6001832500074998071518609218344422855528028621.43%25580.00%01487305248.72%1479312147.39%655131149.96%1917128119726221072533
3Charlotte20200000618-121010000035-210100000313-1000.000691500749980765860921834447624245015320.00%8450.00%01487305248.72%1479312147.39%655131149.96%1917128119726221072533
4Cleveland22000000743110000004311100000031241.000714210074998075186092183444581920359111.11%90100.00%01487305248.72%1479312147.39%655131149.96%1917128119726221072533
5Grand Rapids211000007611010000034-11100000042220.500712190074998077886092183444491618348112.50%8275.00%01487305248.72%1479312147.39%655131149.96%1917128119726221072533
6Hartford22000000963110000005321100000043141.0009152400749980776860921834445012192614535.71%7185.71%01487305248.72%1479312147.39%655131149.96%1917128119726221072533
7Hershey211000003301010000013-21100000020220.5003470174998075886092183444741822506116.67%100100.00%01487305248.72%1479312147.39%655131149.96%1917128119726221072533
8Iowa632010002019132100000121023110100089-180.66720345400749980720486092183444198547110729517.24%27677.78%11487305248.72%1479312147.39%655131149.96%1917128119726221072533
9Laval2020000036-31010000013-21010000023-100.00036900749980761860921834447916223310110.00%11372.73%01487305248.72%1479312147.39%655131149.96%1917128119726221072533
10Lehigh Valley20200000412-81010000039-61010000013-200.000459007499807528609218344479273441500.00%15380.00%01487305248.72%1479312147.39%655131149.96%1917128119726221072533
11Manitoba623000011627-1131200000818-103110000189-150.41716254100749980718686092183444204514410023417.39%21480.95%01487305248.72%1479312147.39%655131149.96%1917128119726221072533
12Ontario413000001220-820200000811-32110000049-520.2501220320074998071148609218344416547516913215.38%22481.82%01487305248.72%1479312147.39%655131149.96%1917128119726221072533
13Providence21100000550110000003211010000023-120.500510150074998076086092183444601522399222.22%11281.82%01487305248.72%1479312147.39%655131149.96%1917128119726221072533
14Rochester311010001082210010008531010000023-140.667102030007499807104860921834448426245414214.29%110100.00%01487305248.72%1479312147.39%655131149.96%1917128119726221072533
15Rockford64100001221393200000113763210000096390.7502241630174998071878609218344421672898322627.27%30293.33%01487305248.72%1479312147.39%655131149.96%1917128119726221072533
16San Diego412001001014-4210001006602020000048-430.3751018280074998071358609218344415841325410110.00%16662.50%01487305248.72%1479312147.39%655131149.96%1917128119726221072533
17San Jose54100000181262110000033033000000159680.8001830480074998071688609218344420660487718527.78%24579.17%01487305248.72%1479312147.39%655131149.96%1917128119726221072533
18Springfield614000011725-8311000011011-130300000714-730.25017324900749980720586092183444188595311223521.74%24770.83%01487305248.72%1479312147.39%655131149.96%1917128119726221072533
19Texas6320100015123321000007433110100088080.667152641017499807182860921834442286162952300.00%31196.77%11487305248.72%1479312147.39%655131149.96%1917128119726221072533
20Toronto2110000057-2110000003121010000026-420.50059140074998076086092183444542326383266.67%11190.91%01487305248.72%1479312147.39%655131149.96%1917128119726221072533
21Tucson421010001861222000000120122010100066060.750183149027499807145860921834449941335921838.10%12375.00%01487305248.72%1479312147.39%655131149.96%1917128119726221072533
22Utica211000009631010000001-11100000095420.5009162500749980769860921834446916183310660.00%9188.89%01487305248.72%1479312147.39%655131149.96%1917128119726221072533
23Wilkes-Barre/Scranton30101100810-22010100045-11000010045-130.50081422007499807102860921834441123123621300.00%9366.67%01487305248.72%1479312147.39%655131149.96%1917128119726221072533
Total82353407303260269-941191603102133127641161804201127142-15900.549260456716057499807264986092183444283881484813903457120.58%3696582.38%31487305248.72%1479312147.39%655131149.96%1917128119726221072533
_Since Last GM Reset82353407303260269-941191603102133127641161804201127142-15900.549260456716057499807264986092183444283881484813903457120.58%3696582.38%31487305248.72%1479312147.39%655131149.96%1917128119726221072533
_Vs Conference5625210520318417862714901102958312291112041018995-6650.58018432250604749980718138609218344419945715768952294720.52%2504582.00%31487305248.72%1479312147.39%655131149.96%1917128119726221072533
_Vs Division301312020039096-6158500002505001557020014046-6330.550901582480274998079648609218344410342973194971202016.67%1332084.96%21487305248.72%1479312147.39%655131149.96%1917128119726221072533

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
8290W126045671626492838814848139005
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
8235347303260269
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4119163102133127
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
4116184201127142
Derniers 10 matchs
WLOTWOTL SOWSOL
550000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
3457120.58%3696582.38%3
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
860921834447499807
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
1487305248.72%1479312147.39%655131149.96%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
1917128119726221072533


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
2 - 2022-11-2511Milwaukee2Bakersfield8ALSommaire du match
4 - 2022-11-2620Milwaukee3Springfield6ALSommaire du match
5 - 2022-11-2723Iowa3Milwaukee5BWSommaire du match
8 - 2022-11-2839Milwaukee4Texas3AWXSommaire du match
9 - 2022-11-2947Springfield5Milwaukee4BLXXSommaire du match
13 - 2022-12-0165Rockford2Milwaukee4BWSommaire du match
15 - 2022-12-0274Milwaukee1Iowa4ALSommaire du match
17 - 2022-12-0387Texas3Milwaukee1BLSommaire du match
18 - 2022-12-0397Milwaukee1Manitoba2ALXXSommaire du match
21 - 2022-12-05109Milwaukee1Rockford3ALSommaire du match
22 - 2022-12-05119San Diego3Milwaukee2BLXSommaire du match
24 - 2022-12-06125Milwaukee6San Jose5AWSommaire du match
27 - 2022-12-08143Manitoba4Milwaukee2BLSommaire du match
29 - 2022-12-09157Ontario7Milwaukee6BLSommaire du match
34 - 2022-12-11179Manitoba11Milwaukee2BLSommaire du match
36 - 2022-12-12191Milwaukee3Iowa2AWXSommaire du match
38 - 2022-12-13202Manitoba3Milwaukee4BWSommaire du match
41 - 2022-12-15220Charlotte5Milwaukee3BLSommaire du match
43 - 2022-12-16229Milwaukee3Charlotte13ALSommaire du match
45 - 2022-12-17236Milwaukee2Rochester3ALSommaire du match
47 - 2022-12-18246Milwaukee5Tucson4AWXSommaire du match
48 - 2022-12-18256Utica1Milwaukee0BLSommaire du match
51 - 2022-12-20272Ontario4Milwaukee2BLSommaire du match
53 - 2022-12-21284Milwaukee4Texas3AWSommaire du match
55 - 2022-12-22296Laval3Milwaukee1BLSommaire du match
57 - 2022-12-23305Milwaukee2Laval3ALSommaire du match
58 - 2022-12-23317Cleveland3Milwaukee4BWSommaire du match
62 - 2022-12-25335Milwaukee4Ontario3AWSommaire du match
64 - 2022-12-26344Milwaukee1Abbotsford2ALXSommaire du match
65 - 2022-12-27351Providence2Milwaukee3BWSommaire du match
68 - 2022-12-28364Milwaukee1Lehigh Valley3ALSommaire du match
70 - 2022-12-29377Hershey3Milwaukee1BLSommaire du match
72 - 2022-12-30385Milwaukee4San Jose3AWSommaire du match
74 - 2022-12-31396Milwaukee4Wilkes-Barre/Scranton5ALXSommaire du match
76 - 2023-01-01403Texas1Milwaukee3BWSommaire du match
79 - 2023-01-03422Springfield2Milwaukee4BWSommaire du match
81 - 2023-01-04433Milwaukee4Iowa3AWSommaire du match
83 - 2023-01-05443Milwaukee5Rockford3AWSommaire du match
86 - 2023-01-06453Texas0Milwaukee3BWSommaire du match
88 - 2023-01-07469Milwaukee0Ontario6ALSommaire du match
90 - 2023-01-08474Rockford3Milwaukee2BLXXSommaire du match
94 - 2023-01-10493Iowa5Milwaukee4BLSommaire du match
96 - 2023-01-11504Milwaukee4Hartford3AWSommaire du match
98 - 2023-01-12517Milwaukee9Utica5AWSommaire du match
99 - 2023-01-13523Rochester2Milwaukee3BWXSommaire du match
102 - 2023-01-14539Milwaukee4Grand Rapids2AWSommaire du match
103 - 2023-01-15547Iowa2Milwaukee3BWSommaire du match
107 - 2023-01-17565Milwaukee0Texas2ALSommaire du match
109 - 2023-01-18571Abbotsford3Milwaukee4BWXSommaire du match
111 - 2023-01-19583Milwaukee3Rockford0AWSommaire du match
113 - 2023-01-20594Milwaukee1San Diego4ALSommaire du match
114 - 2023-01-20599Toronto1Milwaukee3BWSommaire du match
117 - 2023-01-22613Milwaukee3San Diego4ALSommaire du match
120 - 2023-01-23622Lehigh Valley9Milwaukee3BLSommaire du match
123 - 2023-01-25639Springfield4Milwaukee2BLSommaire du match
125 - 2023-01-26651Milwaukee1Tucson2ALSommaire du match
127 - 2023-01-27663Bakersfield3Milwaukee4BWSommaire du match
128 - 2023-01-27672Milwaukee2Hershey0AWSommaire du match
132 - 2023-01-29686Milwaukee8Abbotsford1AWSommaire du match
133 - 2023-01-30692Tucson0Milwaukee4BWSommaire du match
137 - 2023-02-01710Milwaukee3Cleveland1AWSommaire du match
138 - 2023-02-01717Hartford3Milwaukee5BWSommaire du match
141 - 2023-02-03731Milwaukee2Providence3ALSommaire du match
142 - 2023-02-03740San Jose1Milwaukee2BWSommaire du match
145 - 2023-02-05754Milwaukee5San Jose1AWSommaire du match
147 - 2023-02-06764Wilkes-Barre/Scranton3Milwaukee1BLSommaire du match
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
150 - 2023-02-07782Milwaukee2Toronto6ALSommaire du match
152 - 2023-02-08788Rochester3Milwaukee5BWSommaire du match
156 - 2023-02-10808Milwaukee0Springfield2ALSommaire du match
157 - 2023-02-11812Tucson0Milwaukee8BWSommaire du match
160 - 2023-02-12831San Diego3Milwaukee4BWSommaire du match
164 - 2023-02-14852Rockford2Milwaukee7BWSommaire du match
166 - 2023-02-15863Milwaukee2Manitoba4ALSommaire du match
169 - 2023-02-17876Milwaukee4Springfield6ALSommaire du match
171 - 2023-02-18882Bakersfield4Milwaukee3BLSommaire du match
174 - 2023-02-19899Abbotsford3Milwaukee5BWSommaire du match
177 - 2023-02-21912Milwaukee3Bakersfield1AWSommaire du match
182 - 2023-02-23927Grand Rapids4Milwaukee3BLSommaire du match
183 - 2023-02-24934Milwaukee6Bakersfield5AWXSommaire du match
188 - 2023-02-26952Milwaukee5Manitoba3AWSommaire du match
190 - 2023-02-27959San Jose2Milwaukee1BLSommaire du match
195 - 2023-03-02976Wilkes-Barre/Scranton2Milwaukee3BWXSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets5030
Assistance62,05631,096
Assistance PCT75.68%75.84%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
0 2272 - 75.73% 132,882$5,448,170$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
2,992,892$ 1,502,500$ 1,502,500$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
7,588$ 1,500,420$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 15,164$ 0$




Milwaukee Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Sonny Milano1607480154-1244622270010.57%8312419.53302454154202214449.6600.99212
2Mason Marchment15248102150301562662325728.39%10293119.296323812800004247.8901.02012
3Ryan Donato1604692138-14641823065009.20%24318819.931434489402204249.3300.87010
4Sean Walker1642011413461121541463705.41%234393023.971436502380000020.00%20.6800
5Charles Hudon16446761222652782644649.91%18297218.1214284210000004250.5700.8266

Milwaukee Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Sergei Bobrovsky116565460.9053.09691424235637420200.76926

Milwaukee Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison régulière
2082324002233262286-2441132101222117151-34411919010111451351079262457719129978807278094487993048269176493515333646918.96%3868278.76%21598316850.44%1401307445.58%614133346.06%1988135619116171061534
2082324002233262286-2441132101222117151-34411919010111451351079262457719129978807278094487993048269176493515333646918.96%3868278.76%21598316850.44%1401307445.58%614133346.06%1988135619116171061534
Total Saison régulière1647068014606520538-18823832062042662541282323608402254284-30180520912143201014819816014529817201842166888567616281696278069014220.58%73813082.38%62974610448.72%2958624247.39%1310262249.96%383525623944124521451066
Séries éliminatoires
Total Séries éliminatoires00000000000000.00%0.00%0.00%0.00%0.00%000000

Milwaukee Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Milwaukee Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA