Your STHS is out of Date! Please update your STHS version!
Login

San Diego
GP: 82 | W: 49 | L: 29 | OTL: 4 | P: 102
GF: 303 | GA: 244 | PP%: 24.21% | PK%: 83.84%
GM : Michael Chouinard | Morale : 50 | Team Overall : N/A
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
San Diego
49-29-4, 102pts
3
FINAL
2 Springfield
44-33-5, 93pts
Team Stats
W4StreakL3
26-13-2Home Record29-9-3
23-16-2Away Record15-24-2
8-2-0Last 10 Games5-5-0
3.70Goals Per Game3.26
2.98Goals Against Per Game2.93
24.21%Power Play Percentage16.32%
83.84%Penalty Kill Percentage84.36%
San Diego
49-29-4, 102pts
5
FINAL
2 Abbotsford
26-49-7, 59pts
Team Stats
W4StreakL1
26-13-2Home Record15-22-4
23-16-2Away Record11-27-3
8-2-0Last 10 Games1-9-0
3.70Goals Per Game2.88
2.98Goals Against Per Game4.09
24.21%Power Play Percentage17.80%
83.84%Penalty Kill Percentage76.28%
Team Leaders
Goals
Sam Carrick
39
Assists
Richard Panik
56
Points
Richard Panik
90
Plus/Minus
Nick Spaling
27
Wins
Casey DeSmith
31
Save Percentage
Casey DeSmith
0.913

Team Stats
Goals For
303
3.70 GFG
Shots For
3021
36.84 Avg
Power Play Percentage
24.2%
77 GF
Offensive Zone Start
42.7%
Goals Against
244
2.98 GAA
Shots Against
2740
33.41 Avg
Penalty Kill Percentage
83.8%%
48 GA
Defensive Zone Start
39.4%
Team Info

General ManagerMichael Chouinard
CoachScott Arniel
DivisionPacifique
ConferenceConference ouest
CaptainMike Green
Assistant #1
Assistant #2Trevor Daley


Arena Info

Capacity3,000
Attendance2,276
Season Tickets300


Roster Info

Pro Team21
Farm Team18
Contract Limit39 / 50
Prospects51


Team History

This Season49-29-4 (102PTS)
History98-58-16 (0.570%)
Playoff Appearances0
Playoff Record (W-L)-
Stanley Cup0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Max Veronneau (R)X100.00632797768870816471646663764748565000251500,000$
2Luke AdamXX100.00633193627577916680656566735546375000312750,000$
3Nick SpalingXX100.006437916674798872837275717665532850003211,170,000$
4Marc-Antoine PouliotXX100.00661996547366836574636564798276195000362550,000$
5Matt FrattinXX100.00572392707871766355606457846664205000331550,000$
6Sam CarrickXX100.008940857785758071856874707562623950002931,170,000$
7Richard PanikXX100.007236897076768574747273677363614650003031,170,000$
8Sam LaffertyXXX100.00883581797981847089687177774951635000262775,000$
9Kris VersteegXX100.00572694676973806970677162797169325000352957,000$
10James NealXX100.008336836576848173706972648077674950003321,160,000$
11Jordan WealXXX100.006827897474798576887472657858555150002931,000,000$
12Joakim NygardX100.00712593777775816670666864755959465000281700,000$
13Andrew MacDonaldX100.00612683607677875250464484767471125000341550,000$
14Mike Green (C)X100.006627796773848364505857867980752350003521,170,000$
15Mikko LehtonenX100.00832591807882805950524286755454575000272750,000$
16Christian WolaninX100.00762581758881854250404084754948595000263750,000$
17Nick SeelerX100.00734763729175924850475185765552565000281750,000$
18Igor OzhiganovX100.00733377739478855050505288715551605000281700,000$
19Trevor Daley (A)X100.006031875871768755505652896874851650003711,040,000$
Scratches
TEAM AVERAGE100.0070308770797784636661627376636040500
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary Average
1Justin Pogge100.0061878691799796989984788382225000351956,000$
2Casey DeSmith100.0074838689839495969791836262605000292900,000$
Scratches
TEAM AVERAGE100.006885869081969697988881737241500
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Scott Arniel73798080959263CAN592500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Richard PanikSan Diego (ANA)LW/RW823456902220058892979019311.45%11142217.3513223567257000006148.65%11100001.2700000543
2Nick SpalingSan Diego (ANA)C/LW8035458027215221782939020011.95%14161420.181015257325511251797151.88%225900200.99030013512
3Sam CarrickSan Diego (ANA)C/RW823939781489152091292959223613.22%19169020.62712195625611292046151.74%51600000.9200201585
4Sam LaffertySan Diego (ANA)C/LW/RW72314374213801541792817319711.03%11143819.98915247423210141334355.57%217200101.0300000755
5Jordan WealSan Diego (ANA)C/LW/RW712644701480201032517920110.36%6141119.88513185021900051055355.78%19900000.9901000291
6James NealSan Diego (ANA)LW/RW8227396621480168662476218610.93%2143917.555162165265000002146.43%11200000.9215000136
7Trevor DaleySan Diego (ANA)D8213496292604676133491119.77%117196323.95121325652550223229310.00%000000.6300000133
8Mikko LehtonenSan Diego (ANA)D74114152136801016812739888.66%117157121.2341014692390112196200.00%000000.6600000042
9Igor OzhiganovSan Diego (ANA)D7774249118951275713745835.11%94152919.8621921712420110186110.00%000100.6400010300
10Mike GreenSan Diego (ANA)D8212334515395739016850867.14%139175821.4596151032670001229100.00%000000.5114010122
11Joakim NygardSan Diego (ANA)LW82161430-6340747919039988.42%3100412.25011270001133252.56%7800000.6000000223
12Nick SeelerSan Diego (ANA)D82721281112101054156213512.50%73113913.901012600007210.00%000000.4900020001
13Luke AdamSan Diego (ANA)C/LW82101323-61604312712836837.81%12119814.610000010142362051.38%130200000.3800000202
14Andrew MacDonaldSan Diego (ANA)D8241822716024474617388.70%70120814.7401103000097210.00%000000.3600000101
15Kris VersteegSan Diego (ANA)LW/RW8210919-5115283310227779.80%36047.3700004000001047.50%4000000.6302010001
16Max VeronneauSan Diego (ANA)RW8210818-9100345914543906.90%294411.5100013000000148.53%6800000.3800000100
17Matt FrattinSan Diego (ANA)LW/RW71671304015196320449.52%35517.77000010005850051.43%3500000.4713000000
18Marc-Antoine PouliotSan Diego (ANA)C/RW8011011-110047474116542.44%65146.43000000000170053.11%64400000.4300000000
19Christian WolaninSan Diego (ANA)D80268-13152415201810.00%274005.0100000000019000.00%000000.4000000000
Team Total or Average15073015378381476905013721502302088921089.97%7292340515.537714322069825184610391942471752.88%753600400.72318252344547
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Casey DeSmithSan Diego (ANA)54311920.9132.9031628215317540210.800105131451
2Justin PoggeSan Diego (ANA)2616720.9132.83148501708020200.66792650331
Team Total or Average80472640.9132.884647832232556041197781782


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Waiver Possible Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Andrew MacDonaldSan Diego (ANA)D341986-09-07No213 Lbs6 ft1NoNoNoNo1Pro & Farm550,000$0$0$NoLink
Casey DeSmithSan Diego (ANA)G291991-08-13 06:42:45No186 Lbs6 ft0NoNoNoNo2Pro & Farm900,000$0$0$No900,000$Link
Christian WolaninSan Diego (ANA)D261995-03-17No192 Lbs6 ft2NoNoNoNo3Pro & Farm750,000$0$0$No750,000$750,000$Link
Igor OzhiganovSan Diego (ANA)D281992-10-13No212 Lbs6 ft2NoNoNoNo1Pro & Farm700,000$0$0$NoLink
James NealSan Diego (ANA)LW/RW331987-09-03No226 Lbs6 ft2NoNoNoNo2Pro & Farm1,160,000$0$0$No1,160,000$Link
Joakim NygardSan Diego (ANA)LW281993-01-08No180 Lbs6 ft0NoNoNoNo1Pro & Farm700,000$0$0$NoLink
Jordan WealSan Diego (ANA)C/LW/RW291992-04-15No181 Lbs5 ft10NoNoNoNo3Pro & Farm1,000,000$0$0$No1,000,000$1,000,000$Link
Justin PoggeSan Diego (ANA)G351986-04-22 23:37:02No225 Lbs6 ft3NoNoNoNo1Pro & Farm956,000$0$0$No
Kris VersteegSan Diego (ANA)LW/RW351986-05-13No179 Lbs5 ft11NoNoNoNo2Pro & Farm957,000$0$0$No957,000$Link
Luke AdamSan Diego (ANA)C/LW311990-01-01No216 Lbs6 ft2NoNoNoNo2Pro & Farm750,000$0$0$No750,000$Link
Marc-Antoine PouliotSan Diego (ANA)C/RW361985-01-10No211 Lbs6 ft1NoNoNoNo2Pro & Farm550,000$0$0$No550,000$
Matt FrattinSan Diego (ANA)LW/RW331988-01-03No207 Lbs6 ft0NoNoNoNo1Pro & Farm550,000$0$0$NoLink
Max VeronneauSan Diego (ANA)RW251995-12-12Yes195 Lbs6 ft1NoNoNoNo1Pro & Farm500,000$0$0$NoLink
Mike GreenSan Diego (ANA)D351985-10-12No211 Lbs6 ft1NoNoNoNo2Pro & Farm1,170,000$0$0$No1,170,000$Link
Mikko LehtonenSan Diego (ANA)D271994-01-16 06:34:35No196 Lbs6 ft0NoNoNoNo2Pro & Farm750,000$0$0$No750,000$Link
Nick SeelerSan Diego (ANA)D281993-06-03No199 Lbs6 ft2NoNoNoNo1Pro & Farm750,000$0$0$NoLink
Nick SpalingSan Diego (ANA)C/LW321988-09-19No214 Lbs6 ft1NoNoNoNo1Pro & Farm1,170,000$0$0$NoLink
Richard PanikSan Diego (ANA)LW/RW301991-02-07No212 Lbs6 ft1NoNoNoNo3Pro & Farm1,170,000$0$0$No1,170,000$1,170,000$Link
Sam CarrickSan Diego (ANA)C/RW291992-02-04 12:28:46No205 Lbs6 ft0NoNoNoNo3Pro & Farm1,170,000$0$0$No1,170,000$1,170,000$Link
Sam LaffertySan Diego (ANA)C/LW/RW261995-03-06No198 Lbs6 ft1NoNoNoNo2Pro & Farm775,000$0$0$No775,000$Link
Trevor DaleySan Diego (ANA)D371983-10-09No199 Lbs5 ft11NoNoNoNo1Pro & Farm1,040,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2130.76203 Lbs6 ft11.76858,000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jordan WealNick SpalingSam Carrick33005
2Richard PanikSam LaffertyJames Neal30005
3Joakim NygardLuke AdamMax Veronneau24041
4Kris VersteegMarc-Antoine PouliotMatt Frattin13041
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Igor OzhiganovTrevor Daley33023
2Mike GreenMikko Lehtonen30023
3Nick SeelerAndrew MacDonald24023
4Trevor DaleyChristian Wolanin13050
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jordan WealNick SpalingSam Carrick50005
2Richard PanikSam LaffertyJames Neal50005
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Igor OzhiganovTrevor Daley50005
2Mike GreenMikko Lehtonen50005
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Nick SpalingJordan Weal50050
2Sam CarrickLuke Adam50050
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Igor OzhiganovTrevor Daley50050
2Mikko LehtonenMike Green50050
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Sam Carrick50050Igor OzhiganovTrevor Daley50050
2Nick Spaling50050Nick SeelerMike Green50050
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Luke AdamJoakim Nygard50014
2Sam CarrickSam Lafferty50014
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nick SeelerIgor Ozhiganov50014
2Christian WolaninAndrew MacDonald50014
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Jordan WealNick SpalingJames NealMike GreenTrevor Daley
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Jordan WealNick SpalingSam LaffertyMikko LehtonenTrevor Daley
Extra Forwards
Normal PowerPlayPenalty Kill
Joakim Nygard, Nick Spaling, Richard PanikJoakim Nygard, Max VeronneauJordan Weal
Extra Defensemen
Normal PowerPlayPenalty Kill
Trevor Daley, Igor Ozhiganov, Mike GreenNick SeelerTrevor Daley, Andrew MacDonald
Penalty Shots
Nick Spaling, James Neal, Mike Green, Kris Versteeg, Marc-Antoine Pouliot
Goalie
#1 : Casey DeSmith, #2 : Justin Pogge


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Abbotsford76100000251114330000001028431000001596120.85725457001106949682559939261068531924152121411126.83%26292.31%01750332652.62%1560306750.86%729139852.15%1991136118796081083549
2Bakersfield633000002119232100000139431200000810-260.500213960001069496821599392610685318153651052314.35%21385.71%01750332652.62%1560306750.86%729139852.15%1991136118796081083549
3Charlotte211000007701010000045-11100000032120.50071118001069496864993926106853821718259222.22%90100.00%01750332652.62%1560306750.86%729139852.15%1991136118796081083549
4Cleveland31200000910-1211000006601010000034-120.33391726001069496810199392610685310625304513323.08%14192.86%11750332652.62%1560306750.86%729139852.15%1991136118796081083549
5Grand Rapids21000001651110000003121000000134-130.75061218001069496868993926106853852520215240.00%10190.00%01750332652.62%1560306750.86%729139852.15%1991136118796081083549
6Hartford220000001248110000005141100000073441.0001221330010694968869939261068537521143710330.00%5180.00%11750332652.62%1560306750.86%729139852.15%1991136118796081083549
7Hershey2110000011101110000006421010000056-120.5001120310010694968699939261068539129103910330.00%5260.00%01750332652.62%1560306750.86%729139852.15%1991136118796081083549
8Iowa42200000151142110000054121100000107340.500152641001069496814299392610685313835386318316.67%18288.89%01750332652.62%1560306750.86%729139852.15%1991136118796081083549
9Laval201010009901010000056-11000100043120.50091625001069496875993926106853752240237114.29%9366.67%01750332652.62%1560306750.86%729139852.15%1991136118796081083549
10Lehigh Valley211000008801010000056-11100000032120.50081321001069496853993926106853621516406350.00%8362.50%01750332652.62%1560306750.86%729139852.15%1991136118796081083549
11Manitoba440000001688220000007432200000094581.000162945001069496817699392610685312327206921314.29%6350.00%01750332652.62%1560306750.86%729139852.15%1991136118796081083549
12Milwaukee4210100014104220000008442010100066060.750142741001069496815899392610685313543317016637.50%10190.00%01750332652.62%1560306750.86%729139852.15%1991136118796081083549
13Ontario623000011722-5311000011010031200000712-550.417173047001069496822699392610685324052549322522.73%27774.07%11750332652.62%1560306750.86%729139852.15%1991136118796081083549
14Providence21100000752110000003031010000045-120.50071320011069496877993926106853642416387228.57%7271.43%01750332652.62%1560306750.86%729139852.15%1991136118796081083549
15Rochester42200000181172110000012662110000065140.500183351011069496812599392610685311836287317635.29%13192.31%01750332652.62%1560306750.86%729139852.15%1991136118796081083549
16Rockford4120100013130211000006512010100078-140.500132336101069496813899392610685313439287711327.27%130100.00%01750332652.62%1560306750.86%729139852.15%1991136118796081083549
17San Jose63101010241863110100013130320000101156100.8332438620010694968245993926106853207385110121523.81%20290.00%11750332652.62%1560306750.86%729139852.15%1991136118796081083549
18Springfield412001001012-22010010046-22110000066030.37510182800106949681479939261068531132228641400.00%13192.31%01750332652.62%1560306750.86%729139852.15%1991136118796081083549
19Texas422000001112-12110000078-12110000044040.500112031001069496815299392610685313036366215320.00%18477.78%01750332652.62%1560306750.86%729139852.15%1991136118796081083549
20Toronto2010100068-21010000014-31000100054120.50061218001069496870993926106853732414358225.00%7185.71%01750332652.62%1560306750.86%729139852.15%1991136118796081083549
21Tucson6320000124195330000001761130200001713-670.5832442660110694968226993926106853193555411411218.18%22577.27%01750332652.62%1560306750.86%729139852.15%1991136118796081083549
22Utica210000101082100000106511100000043141.000101525001069496874993926106853622615257457.14%5180.00%01750332652.62%1560306750.86%729139852.15%1991136118796081083549
23Wilkes-Barre/Scranton220000001046110000004221100000062441.000101727001069496879993926106853612522326466.67%11281.82%01750332652.62%1560306750.86%729139852.15%1991136118796081083549
Total8242290512330324459412413011111601174341181604012143127161020.62230353784014106949683021993926106853274073070013723187724.21%2974883.84%41750332652.62%1560306750.86%729139852.15%1991136118796081083549
_Since Last GM Reset8242290512330324459412413011111601174341181604012143127161020.62230353784014106949683021993926106853274073070013723187724.21%2974883.84%41750332652.62%1560306750.86%729139852.15%1991136118796081083549
_Vs Conference5529190311219015535271770110110071292812120201190846690.6271903375271210694968208099392610685317864414579392134219.72%1943084.54%21750332652.62%1560306750.86%729139852.15%1991136118796081083549
_Vs Division31171001012111892215103010016340231677000114849-1400.6451111943050210694968116799392610685310132392765341182420.34%1161983.62%21750332652.62%1560306750.86%729139852.15%1991136118796081083549

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
82102W430353784030212740730700137214
All Games
GPWLOTWOTL SOWSOLGFGA
8242295123303244
Home Games
GPWLOTWOTL SOWSOLGFGA
4124131111160117
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4118164012143127
Last 10 Games
WLOTWOTL SOWSOL
820000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3187724.21%2974883.84%4
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
99392610685310694968
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1750332652.62%1560306750.86%729139852.15%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1991136118796081083549


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2022-11-253San Diego4Abbotsford2AWBoxScore
3 - 2022-11-2614Abbotsford1San Diego4BWBoxScore
6 - 2022-11-2729San Diego2Ontario6ALBoxScore
8 - 2022-11-2841Ontario5San Diego4BLXXBoxScore
10 - 2022-11-2952San Diego2Tucson6ALBoxScore
12 - 2022-11-3061Bakersfield2San Diego4BWBoxScore
13 - 2022-12-0168San Diego1Bakersfield3ALBoxScore
16 - 2022-12-0279San Diego6San Jose2AWBoxScore
17 - 2022-12-0391Tucson2San Diego4BWBoxScore
21 - 2022-12-05111Cleveland2San Diego1BLBoxScore
22 - 2022-12-05119San Diego3Milwaukee2AWXBoxScore
25 - 2022-12-07133Bakersfield4San Diego3BLBoxScore
27 - 2022-12-08147Ontario1San Diego5BWBoxScore
32 - 2022-12-10168San Diego3Ontario5ALBoxScore
33 - 2022-12-11172San Diego1Abbotsford2ALBoxScore
35 - 2022-12-12185San Jose6San Diego4BLBoxScore
38 - 2022-12-13200San Diego5Toronto4AWXBoxScore
39 - 2022-12-14208Grand Rapids1San Diego3BWBoxScore
42 - 2022-12-15225San Diego4Laval3AWXBoxScore
44 - 2022-12-16232Springfield2San Diego1BLXBoxScore
46 - 2022-12-17244San Diego4Utica3AWBoxScore
48 - 2022-12-18254Cleveland4San Diego5BWBoxScore
49 - 2022-12-19264San Diego3Tucson4ALXXBoxScore
53 - 2022-12-21278Tucson4San Diego9BWBoxScore
55 - 2022-12-22292San Diego5Hershey6ALBoxScore
56 - 2022-12-22302Iowa1San Diego3BWBoxScore
59 - 2022-12-24319San Diego4Providence5ALBoxScore
60 - 2022-12-24326Charlotte5San Diego4BLBoxScore
63 - 2022-12-26338San Diego4Iowa5ALBoxScore
64 - 2022-12-26348Toronto4San Diego1BLBoxScore
67 - 2022-12-28363San Diego6Iowa2AWBoxScore
69 - 2022-12-29371Providence0San Diego3BWBoxScore
73 - 2022-12-31390San Diego2Tucson3ALBoxScore
75 - 2023-01-01398San Jose4San Diego5BWXBoxScore
77 - 2023-01-02407San Diego3Grand Rapids4ALXXBoxScore
79 - 2023-01-03419San Diego2Rochester0AWBoxScore
81 - 2023-01-04428Springfield4San Diego3BLBoxScore
83 - 2023-01-05441San Diego0Texas3ALBoxScore
85 - 2023-01-06449Lehigh Valley6San Diego5BLBoxScore
87 - 2023-01-07465San Diego4Texas1AWBoxScore
89 - 2023-01-08473Laval6San Diego5BLBoxScore
91 - 2023-01-09484San Diego6Wilkes-Barre/Scranton2AWBoxScore
94 - 2023-01-10497San Diego4Manitoba2AWBoxScore
95 - 2023-01-11502Hartford1San Diego5BWBoxScore
98 - 2023-01-12519Wilkes-Barre/Scranton2San Diego4BWBoxScore
100 - 2023-01-13530San Diego7Hartford3AWBoxScore
102 - 2023-01-14541San Diego4Rochester5ALBoxScore
104 - 2023-01-15551Hershey4San Diego6BWBoxScore
108 - 2023-01-17569Iowa3San Diego2BLBoxScore
111 - 2023-01-19582San Diego3Lehigh Valley2AWBoxScore
113 - 2023-01-20594Milwaukee1San Diego4BWBoxScore
117 - 2023-01-22613Milwaukee3San Diego4BWBoxScore
122 - 2023-01-24634Tucson0San Diego4BWBoxScore
125 - 2023-01-26648San Diego3Charlotte2AWBoxScore
126 - 2023-01-26657Ontario4San Diego1BLBoxScore
130 - 2023-01-28678San Diego4Rockford3AWXBoxScore
132 - 2023-01-29683Rockford2San Diego1BLBoxScore
135 - 2023-01-31701Rochester2San Diego1BLBoxScore
137 - 2023-02-01713San Diego3Rockford5ALBoxScore
139 - 2023-02-02720San Diego5Manitoba2AWBoxScore
141 - 2023-02-03729Rochester4San Diego11BWBoxScore
145 - 2023-02-05752Abbotsford0San Diego2BWBoxScore
147 - 2023-02-06765San Diego4Bakersfield3AWBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
149 - 2023-02-07775Abbotsford1San Diego4BWBoxScore
151 - 2023-02-08786San Diego3Cleveland4ALBoxScore
155 - 2023-02-10801Bakersfield3San Diego6BWBoxScore
157 - 2023-02-11814San Diego3Bakersfield4ALBoxScore
159 - 2023-02-12824Manitoba2San Diego4BWBoxScore
160 - 2023-02-12831San Diego3Milwaukee4ALBoxScore
163 - 2023-02-14846Manitoba2San Diego3BWBoxScore
165 - 2023-02-15854San Diego2Ontario1AWBoxScore
167 - 2023-02-16870San Diego3San Jose2AWXXBoxScore
169 - 2023-02-17874Texas3San Diego5BWBoxScore
172 - 2023-02-18890San Diego2San Jose1AWBoxScore
174 - 2023-02-19896Rockford3San Diego5BWBoxScore
175 - 2023-02-20903San Diego3Springfield4ALBoxScore
180 - 2023-02-22919Utica5San Diego6BWXXBoxScore
185 - 2023-02-25942Texas5San Diego2BLBoxScore
187 - 2023-02-26946San Diego5Abbotsford3AWBoxScore
191 - 2023-02-28962San Jose3San Diego4BWBoxScore
193 - 2023-03-01971San Diego3Springfield2AWBoxScore
195 - 2023-03-02979San Diego5Abbotsford2AWBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price5030
Attendance62,17731,134
Attendance PCT75.83%75.94%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 2276 - 75.86% 133,119$5,457,870$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,271,852$ 1,801,800$ 1,801,800$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
9,100$ 1,771,897$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 11,625$ 0$




San Diego Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Richard Panik16468112180444011617859411.45%22284517.35264470134000012248.6501.2700
2Nick Spaling160709016054424435658611.95%28322820.182030501462241014251.8800.9906
3Sam Carrick16478781562817841825859013.22%38338120.621424381122241812251.7400.9200
4Sam Lafferty1446286148427630835856211.03%22287619.9818304814820288655.5701.0300
5Jordan Weal142528814028164020650210.36%12282219.881026361000001010655.7800.9902

San Diego Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Casey DeSmith108623840.9132.90632416430635080420.80020
2Justin Pogge52321440.9132.8329700214016040400.66718

San Diego Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
2082422905123303244594124130111116011743411816040121431271610230353784014106949683021993926106853274073070013723187724.21%2974883.84%41750332652.62%1560306750.86%729139852.15%1991136118796081083549
2082422905123303244594124130111116011743411816040121431271610230353784014106949683021993926106853274073070013723187724.21%2974883.84%41750332652.62%1560306750.86%729139852.15%1991136118796081083549
Total Regular Season1648458010246606488118824826022223202348682363208024286254322046061074168028212188192166042198618522136106548014601400274463615424.21%5949683.84%83500665252.62%3120613450.86%1458279652.15%398327233759121621671098
Playoff
Total Playoff00000000000000.00%0.00%0.00%0.00%0.00%000000

San Diego Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

San Diego Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA