Version obsolète du STHS! Veuillez mettre à jour votre version!
Connexion

Rochester
GP: 7 | W: 3 | L: 4
GF: 25 | GA: 28 | PP%: 18.42% | PK%: 65.52%
DG: Yanick Morneau | Morale : 50 | Moyenne d’équipe : N/A
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Rochester
3-4-0, 6pts
3
FINAL
2 Providence
5-7-0, 10pts
Team Stats
L1StreakL1
2-2-0Home Record2-4-0
1-2-0Away Record3-3-0
3-3-1Last 10 Games4-5-1
3.57Buts par match 3.00
4.00Buts contre par match 3.67
18.42%Pourcentage en avantage numérique25.49%
65.52%Pourcentage en désavantage numérique78.85%
Providence
5-7-0, 10pts
4
FINAL
2 Rochester
3-4-0, 6pts
Team Stats
L1StreakL1
2-4-0Home Record2-2-0
3-3-0Away Record1-2-0
4-5-1Last 10 Games3-3-1
3.00Buts par match 3.57
3.67Buts contre par match 4.00
25.49%Pourcentage en avantage numérique18.42%
78.85%Pourcentage en désavantage numérique65.52%
Meneurs d'équipe
Buts
Max Willman
7
Passes
Jake Muzzin
7
Points
Max Willman
12
Plus/Moins
Dan Girardi
6
Victoires
Brian Elliott
3
Pourcentage d’arrêts
Scott Darling
0.947

Statistiques d’équipe
Buts pour
25
3.57 GFG
Tirs pour
225
32.14 Avg
Pourcentage en avantage numérique
18.4%
7 GF
Début de zone offensive
40.0%
Buts contre
28
4.00 GAA
Tirs contre
265
37.86 Avg
Pourcentage en désavantage numérique
65.5%%
10 GA
Début de la zone défensive
42.5%
Informations de l'équipe

Directeur généralYanick Morneau
EntraîneurBrad Shaw
DivisionNord
ConférenceConference est
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,977
Billets de saison300


Informations de la formation

Équipe Pro22
Équipe Mineure19
Limite contact 41 / 50
Espoirs40


Historique d'équipe

Saison actuelle3-4
Historique41-29-11 (0.506%)
Apparitions en séries éliminatoires 1
Historique en séries éliminatoires (W-L)3-4
Coupe Stanley0


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Miikka SalomakiXX100.00683386787474916672666663765145475000282750,000$
2Andrew ShawXX100.00684085777587936579647164775551415000292900,000$
3Petr VranaXXX100.00643085516959836653666559758375175000371650,000$
4Devante Smith-PellyXXX100.00662690728381906364646459825849415000291550,000$
5Martin FrkXX100.00733285807676917073676957825144525000272800,000$
6Lucas LessioXX100.00693480698777886669656667694952385000282700,000$
7Teemu PulkkinenXX100.00612996767274847071636557815550485000291600,000$
8Dakota Joshua (R)XX100.00926085748470836791676965754949655000251500,000$
9Slava VoynovX100.00674680787489905025494883556059515000313750,000$
10Jake MuzzinX100.00743575708888985450505085757067425000321852,000$
11Braydon CoburnX100.00825045588376895734545584757976185000361756,000$
12Julian MelchioriX100.00713871639584894750484685775658485000291600,000$
13Mark GiordanoX100.00683388567280825650504786549299155000371500,000$
14Martin MarincinX100.00753176719380854450444392716360425000291900,000$
Rayé
1Josh Norris (R)X100.0082359287898993778672816687383983500X0222900,000$
2Nick Merkley (R)X100.00793287817878867773727265784241665000241800,000$
3Max Willman (R)XX100.00853087768376836770667167755252635000261500,000$
4Slater KoekkoekX100.00683287848277784253414280754947575000273800,000$
5Dan GirardiX100.0073308154887684505051498674879915000373750,000$
6Brendan GuhleX100.00732599858579723870383883754545595000233500,000$
MOYENNE D’ÉQUIPE100.0073358372827987606258597374595845500
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Scott Darling100.0059938197799795908990866464585000323750,000$
Rayé
1Brian Elliott100.00668189918194979695848499952350003711,200,000$
MOYENNE D’ÉQUIPE100.006387859480969693928785828041500
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Brad Shaw68747071878773CAN562500,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Max WillmanRochester (BUF)C/LW67512210012122661326.92%113322.29325926000061048.78%4100001.7900000100
2Jake MuzzinRochester (BUF)D717816012131710135.88%1317324.791341235000020000.00%000000.9200000002
3Dan GirardiRochester (BUF)D63366001141541020.00%1015425.79123726000019100.00%000000.7800000011
4Martin FrkRochester (BUF)LW/RW7415240372341317.39%110915.70101619000000166.67%300000.9100000001
5Lucas LessioRochester (BUF)LW/RW714530021114177.14%011616.69011324000000036.36%1100000.8600000100
6Josh NorrisRochester (BUF)C4224-140612124816.67%210225.580113150000150047.31%16700000.7800000001
7Dakota JoshuaRochester (BUF)C/LW7134360142117695.88%012117.34011524000230059.48%15300000.6600000000
8Braydon CoburnRochester (BUF)D7123-2120259164126.25%614620.981011229000014000.00%000000.4100000000
9Nick MerkleyRochester (BUF)RW4033-120157770.00%19924.770001150001130083.33%600000.6100000000
10Mark GiordanoRochester (BUF)D7213-3203351240.00%59513.700002100000100.00%000000.6300000010
11Miikka SalomakiRochester (BUF)LW/RW702202037114110.00%17911.390001000003000.00%400000.5000000000
12Andrew ShawRochester (BUF)C/RW702200053147140.00%07911.3600011000120053.49%8600000.5000000000
13Devante Smith-PellyRochester (BUF)C/LW/RW7112-1004242525.00%0395.6100000000000033.33%300001.0200000010
14Martin MarincinRochester (BUF)D702222055205130.00%1715121.580111628000018000.00%000000.2600000000
15Slava VoynovRochester (BUF)D7011120221100.00%3263.730000000001000.00%000000.7700000000
16Petr VranaRochester (BUF)C/LW/RW7101-1203760516.67%0395.6100000000000033.33%3900000.5100000000
17Julian MelchioriRochester (BUF)D7011-5401734140.00%129713.940000000004000.00%000000.2100000000
18Dominik KahunBuffaloLW/RW1011000110260.00%02424.6300005000040075.00%400000.8100000000
19Teemu PulkkinenRochester (BUF)LW/RW7101-20001152820.00%27711.0800000000060036.36%1100000.2600000000
Statistiques d’équipe totales ou en moyenne11925416645801291382177116011.52%74186815.70711187825500041373150.76%52800000.7100000235
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Brian ElliottRochester (BUF)73210.8943.8340720262450100.00%070100
2Scott DarlingRochester (BUF)10100.9471.9431001190010.00%007000
Statistiques d’équipe totales ou en moyenne83310.8983.704382027264011077100


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Andrew ShawRochester (BUF)C/RW291991-07-20No195 Lbs5 ft10NoNoNo2Pro & Farm900,000$0$0$No900,000$Lien
Braydon CoburnRochester (BUF)D361985-02-27No230 Lbs6 ft5NoNoNo1Pro & Farm756,000$0$0$No
Brendan GuhleRochester (BUF)D231997-07-29 08:04:16No197 Lbs6 ft2NoNoNo3Pro & Farm500,000$0$0$No500,000$500,000$Lien
Brian Elliott (contrat à 1 volet)Rochester (BUF)G371984-01-10 17:37:02No198 Lbs6 ft3NoNoYes1Pro & Farm1,200,000$12,000$0$No
Dakota JoshuaRochester (BUF)C/LW251996-05-15 08:36:56Yes199 Lbs6 ft2NoNoNo1Pro & Farm500,000$0$0$NoLien
Dan GirardiRochester (BUF)D371984-04-28No212 Lbs6 ft1NoNoNo3Pro & Farm750,000$0$0$No750,000$750,000$Lien
Devante Smith-PellyRochester (BUF)C/LW/RW291992-06-14No228 Lbs6 ft0NoNoNo1Pro & Farm550,000$0$0$NoLien
Jake Muzzin (contrat à 1 volet)Rochester (BUF)D321989-02-21No219 Lbs6 ft3NoNoYes1Pro & Farm852,000$8,520$0$NoLien
Josh NorrisRochester (BUF)C221999-05-05Yes194 Lbs6 ft2NoYesNo2Pro & Farm900,000$0$0$No900,000$Lien
Julian MelchioriRochester (BUF)D291991-12-06No220 Lbs6 ft5NoNoNo1Pro & Farm600,000$0$0$NoLien
Lucas LessioRochester (BUF)LW/RW281993-01-23No217 Lbs6 ft1NoNoNo2Pro & Farm700,000$0$0$No700,000$Lien
Mark GiordanoRochester (BUF)D371983-10-03No202 Lbs6 ft0NoNoNo1Pro & Farm500,000$0$0$NoLien
Martin FrkRochester (BUF)LW/RW271993-10-05No212 Lbs6 ft1NoNoNo2Pro & Farm800,000$0$0$No800,000$Lien
Martin MarincinRochester (BUF)D291992-02-18No218 Lbs6 ft5NoNoNo1Pro & Farm900,000$0$0$NoLien
Max WillmanRochester (BUF)C/LW261995-02-13 08:44:40Yes198 Lbs6 ft1NoNoNo1Pro & Farm500,000$0$0$No
Miikka SalomakiRochester (BUF)LW/RW281993-03-09No211 Lbs5 ft11NoNoNo2Pro & Farm750,000$0$0$No750,000$Lien
Nick MerkleyRochester (BUF)RW241997-05-23Yes198 Lbs5 ft10NoNoNo1Pro & Farm800,000$0$0$NoLien
Petr VranaRochester (BUF)C/LW/RW371984-01-10No186 Lbs5 ft10NoNoNo1Pro & Farm650,000$0$0$No
Scott DarlingRochester (BUF)G321988-12-22 06:40:45No241 Lbs6 ft6NoNoNo3Pro & Farm750,000$0$0$No750,000$750,000$Lien
Slater KoekkoekRochester (BUF)D271994-02-18No197 Lbs6 ft2NoNoNo3Pro & Farm800,000$0$0$No800,000$800,000$Lien
Slava VoynovRochester (BUF)D311990-01-15No198 Lbs6 ft0NoNoNo3Pro & Farm750,000$0$0$No750,000$750,000$Lien
Teemu PulkkinenRochester (BUF)LW/RW291992-01-02No194 Lbs5 ft11NoNoNo1Pro & Farm600,000$0$0$NoLien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2229.73207 Lbs6 ft11.68727,636$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
140122
2Lucas LessioDakota JoshuaMartin Frk30122
3Miikka SalomakiAndrew ShawTeemu Pulkkinen20122
4Devante Smith-PellyPetr Vrana10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jake Muzzin40122
2Braydon CoburnMartin Marincin30122
3Mark GiordanoJulian Melchiori20122
4Slava Voynov10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
160122
2Lucas LessioDakota JoshuaMartin Frk40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jake Muzzin60122
2Braydon CoburnMartin Marincin40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
160122
2Dakota Joshua40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jake Muzzin60122
2Braydon CoburnMartin Marincin40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
160122Jake Muzzin60122
240122Braydon CoburnMartin Marincin40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
160122
2Dakota Joshua40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jake Muzzin60122
2Braydon CoburnMartin Marincin40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Jake Muzzin
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Jake Muzzin
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Andrew Shaw, Miikka Salomaki, Teemu PulkkinenAndrew Shaw, Miikka SalomakiTeemu Pulkkinen
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Mark Giordano, Julian Melchiori, Slava VoynovMark GiordanoJulian Melchiori, Slava Voynov
Tirs de pénalité
, , , Dakota Joshua, Lucas Lessio
Gardien
#1 : , #2 : Scott Darling


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Providence734000002528-3422000001818031200000710-360.429254469108412122571727210265746013338718.42%291065.52%011826544.53%12928245.74%5411646.55%163109182559246
Total734000002528-3422000001818031200000710-360.429254469108412122571727210265746013338718.42%291065.52%011826544.53%12928245.74%5411646.55%163109182559246
_Since Last GM Reset734000002528-3422000001818031200000710-360.429254469108412122571727210265746013338718.42%291065.52%011826544.53%12928245.74%5411646.55%163109182559246
_Vs Conference734000002528-3422000001818031200000710-360.429254469108412122571727210265746013338718.42%291065.52%011826544.53%12928245.74%5411646.55%163109182559246
_Vs Division734000002528-3422000001818031200000710-360.429254469108412122571727210265746013338718.42%291065.52%011826544.53%12928245.74%5411646.55%163109182559246

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
76L1254469225265746013310
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
73400002528
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
42200001818
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
3120000710
Derniers 10 matchs
WLOTWOTL SOWSOL
330100
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
38718.42%291065.52%0
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
7172721084121
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
11826544.53%12928245.74%5411646.55%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
163109182559246


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
1 - 2022-11-252Providence5Rochester6BWSommaire du match
3 - 2022-11-2610Providence7Rochester5BLSommaire du match
5 - 2022-11-2718Rochester1Providence4ALSommaire du match
7 - 2022-11-2826Rochester3Providence4ALXSommaire du match
9 - 2022-11-2934Providence2Rochester5BWSommaire du match
11 - 2022-11-3042Rochester3Providence2AWXSommaire du match
13 - 2022-12-0150Providence4Rochester2BLSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets4525
Assistance7,9064,000
Assistance PCT98.83%100.00%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
37 2977 - 99.22% 153,822$615,289$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
0$ 1,395,600$ 1,395,600$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
0$ 0$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 0$ 0$




Rochester Leaders statistiques (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Max Willman80303666147615213322613.27%6157619.70311145010145647.2900.8403
2Martin Frk8219395843069852138.92%1130415.91312153800001048.0000.8902
3Dominik Kahun51223153120328020011.00%5124624.4357123700056245.2810.8502
4Nick Merkley572132531216768420510.24%10116920.5249135000050148.9900.9113
5Tobias Rieder3920244468388017311.56%1793523.9867133200035151.1210.9400

Rochester Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Brian Elliott58331770.9093.0333674417018580210.53813
2Scott Darling2581150.8973.50142300838030100.60010

Rochester Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison régulière
2082352906705272282-1041161503205142151-941191403500130131-1942724767481497878210265789486786256278483276314933206119.06%3266280.98%11475300249.13%1485312547.52%673139548.24%1927131119566311080533
Total Saison régulière82352906705272282-1041161503205142151-941191403500130131-1942724767481497878210265789486786256278483276314933206119.06%3266280.98%11475300249.13%1485312547.52%673139548.24%1927131119566311080533
Séries éliminatoires
20734000002528-3422000001818031200000710-36254469108412122571727210265746013338718.42%291065.52%011826544.53%12928245.74%5411646.55%163109182559246
Total Séries éliminatoires734000002528-3422000001818031200000710-36254469108412122571727210265746013338718.42%291065.52%011826544.53%12928245.74%5411646.55%163109182559246

Rochester Leaders statistiques (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Max Willman6751221012122626.92%113322.29325900001048.7801.7900
2Jake Muzzin7178161213175.88%1317324.79134120000000.00%00.9200
3Dan Girardi6336601141520.00%1015425.7912370000100.00%00.7800
4Lucas Lessio714530211147.14%011616.69011300000036.3600.8600
5Martin Frk741524372317.39%110915.70101600000166.6700.9100

Rochester Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Brian Elliott73210.8943.8340720262450100.00%0
2Scott Darling10100.9471.9431001190010.00%0