Version obsolète du STHS! Veuillez mettre à jour votre version!
Connexion

Milwaukee
GP: 6 | W: 2 | L: 4
GF: 15 | GA: 20 | PP%: 17.39% | PK%: 75.76%
DG: | Morale : 50 | Moyenne d’équipe : N/A
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Milwaukee
2-4-0, 4pts
3
FINAL
2 Springfield
16-6-0, 32pts
Team Stats
L1StreakW3
1-2-0Home Record8-3-0
1-2-0Away Record8-3-0
2-4-0Last 10 Games8-1-1
2.50Buts par match 3.36
3.33Buts contre par match 2.27
17.39%Pourcentage en avantage numérique20.51%
75.76%Pourcentage en désavantage numérique87.18%
Springfield
16-6-0, 32pts
5
FINAL
4 Milwaukee
2-4-0, 4pts
Team Stats
W3StreakL1
8-3-0Home Record1-2-0
8-3-0Away Record1-2-0
8-1-1Last 10 Games2-4-0
3.36Buts par match 2.50
2.27Buts contre par match 3.33
20.51%Pourcentage en avantage numérique17.39%
87.18%Pourcentage en désavantage numérique75.76%
Meneurs d'équipe
Buts
Vladimir Sobotka
2
Passes
Taylor Beck
3
Points
Taylor Beck
5
Plus/Moins
Taylor Beck
2
Victoires
Ondrej Pavelec
1
Pourcentage d’arrêts
Thomas Greiss
0.963

Statistiques d’équipe
Buts pour
15
2.50 GFG
Tirs pour
196
32.67 Avg
Pourcentage en avantage numérique
17.4%
4 GF
Début de zone offensive
36.1%
Buts contre
20
3.33 GAA
Tirs contre
258
43.00 Avg
Pourcentage en désavantage numérique
75.8%%
8 GA
Début de la zone défensive
48.2%
Informations de l'équipe

Directeur général
EntraîneurRick Tocchet
DivisionCentrale
ConférenceConference ouest
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,509
Billets de saison300


Informations de la formation

Équipe Pro18
Équipe Mineure20
Limite contact 38 / 50
Espoirs51


Historique d'équipe

Saison actuelle2-4
Historique42-34-10 (0.488%)
Apparitions en séries éliminatoires 1
Historique en séries éliminatoires (W-L)2-4
Coupe Stanley0


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Taylor BeckXX100.00673298698978946973667372715353415000303800,000$
2Linden VeyXX100.00642996757477996784666865715648405000293750,000$
3Brett RitchieX100.00894075739774856769676860745755495000281775,000$
4Antoine RousselXX100.00764766726868916482676467595453315000311700,000$
5Nick CousinsXXX100.00693477787879877276687360865242505000272900,000$
6Alan QuineXXX100.00663086777779847385727265835344565000281800,000$
7Micheal FerlandXX100.00774474768783787371717264795771595000293875,000$
8Jordan NolanXX100.00614291638569876162626366725857355000321600,000$
9Christian Fischer (R)XX100.00883091758978756970677071754545695000242900,000$
10Jason DemersX100.006741866579808355505645907571643550003311,265,000$
11Radim SimekX100.009030887680798046504546877559594950002811,075,000$
12Matt HunwickX100.006526886573768148504543907577742350003511,050,000$
13Joe MorrowX100.00683275778084875750595188745150505000281600,000$
14Brett KulakX100.00723376778887875451535388695152595000272800,000$
Rayé
1Vladislav Kamenev (R)XXX100.00773289828972867892757473734444645000241800,000$
2Vladimir SobotkaXX100.00823972577165846871657172749593105000331775,000$
MOYENNE D’ÉQUIPE100.0074358372827786646863637474585745500
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Thomas Greiss100.00588182857595989999808487913050003521,250,000$
Rayé
1Ondrej Pavelec100.00608184897898969998838686884050003311,110,000$
MOYENNE D’ÉQUIPE100.005981838777979799998285879035500
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Rick Tocchet81757780828585USA5711,500,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Taylor BeckMilwaukee (NSH)LW/RW6235200151531213.33%012220.49101320000000028.57%700000.8100000000
2Alan QuineMilwaukee (NSH)C/LW/RW62352553523778.70%012120.25011219000000044.44%900000.8200100000
3Radim SimekMilwaukee (NSH)D6134-28011581212.50%1314424.10112318000123000.00%000000.5500000000
4Christian FischerMilwaukee (NSH)C/RW622424013111751611.76%013622.700112200000130049.70%16500000.5900000001
5Linden VeyMilwaukee (NSH)C/RW61231603783312.50%210016.8200000000001052.63%1900000.5900000001
6Micheal FerlandMilwaukee (NSH)LW/RW6123-160117169276.25%112621.141014200000130041.38%2900000.4700000010
7Vladimir SobotkaMilwaukee (NSH)LW/RW521304084132615.38%111923.820111170002250053.85%1300000.5000000000
8Brett KulakMilwaukee (NSH)D6123-2201461071210.00%1516327.18112423000029000.00%000000.3700000001
9Vladislav KamenevMilwaukee (NSH)C/LW/RW4022-320312171100.00%110626.520116140000220053.06%14700000.3800000000
10Brett RitchieMilwaukee (NSH)RW60220608813390.00%09015.0400001000000060.00%500000.4400000000
11Antoine RousselMilwaukee (NSH)C/LW620201810361841411.11%19515.9200000000161044.44%900000.4200101000
12Joe MorrowMilwaukee (NSH)D6022-2601679590.00%616026.73011423000126000.00%000000.2500000000
13Nick CousinsMilwaukee (NSH)C/LW/RW6022000213107240.00%110417.4500001000040048.94%14100000.3800000000
14Jason DemersMilwaukee (NSH)D6011-1001613350.00%1814624.33011518000026000.00%000000.1400000000
15Matt HunwickMilwaukee (NSH)D610121205242225.00%109616.060000000004000.00%000000.2100000000
16Jordan NolanMilwaukee (NSH)LW/RW6011-255012010.00%0193.2700000000000040.00%500001.0200100000
Statistiques d’équipe totales ou en moyenne93152843-48420102105196621597.65%69185419.9448123419800051962049.73%54900000.4600301013
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Ondrej PavelecMilwaukee (NSH)51400.9163.3330620172030010.00%051100
2Thomas GreissMilwaukee (NSH)11000.9631.3291002540000.00%015100
Statistiques d’équipe totales ou en moyenne62400.9262.863982019257001066200


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Alan QuineMilwaukee (NSH)C/LW/RW281993-02-25No204 Lbs6 ft0NoNoNo1Pro & Farm800,000$0$0$NoLien
Antoine RousselMilwaukee (NSH)C/LW311989-11-21No192 Lbs6 ft0NoNoNo1Pro & Farm700,000$0$0$NoLien
Brett KulakMilwaukee (NSH)D271994-01-06No189 Lbs6 ft2NoNoNo2Pro & Farm800,000$0$0$No800,000$Lien
Brett RitchieMilwaukee (NSH)RW281993-06-01No221 Lbs6 ft4NoNoNo1Pro & Farm775,000$0$0$NoLien
Christian FischerMilwaukee (NSH)C/RW241997-04-15 08:45:38Yes214 Lbs6 ft2NoNoNo2Pro & Farm900,000$0$0$No900,000$Lien
Jason DemersMilwaukee (NSH)D331988-06-09No204 Lbs6 ft1NoNoNo1Pro & Farm1,265,000$0$0$NoLien
Joe MorrowMilwaukee (NSH)D281992-12-09No200 Lbs6 ft0NoNoNo1Pro & Farm600,000$0$0$NoLien
Jordan NolanMilwaukee (NSH)LW/RW321989-06-23No230 Lbs6 ft3NoNoNo1Pro & Farm600,000$0$0$NoLien
Linden VeyMilwaukee (NSH)C/RW291991-07-17No198 Lbs6 ft0NoNoNo3Pro & Farm750,000$0$0$No750,000$750,000$Lien
Matt HunwickMilwaukee (NSH)D351985-08-05No203 Lbs5 ft11NoNoNo1Pro & Farm1,050,000$0$0$NoLien
Micheal FerlandMilwaukee (NSH)LW/RW291992-04-20No211 Lbs6 ft2NoNoNo3Pro & Farm875,000$0$0$No875,000$875,000$Lien
Nick CousinsMilwaukee (NSH)C/LW/RW271993-07-20No192 Lbs5 ft10NoNoNo2Pro & Farm900,000$0$0$No900,000$Lien
Ondrej PavelecMilwaukee (NSH)G331987-08-31 05:37:02No224 Lbs6 ft2NoNoNo1Pro & Farm1,110,000$0$0$No
Radim SimekMilwaukee (NSH)D281992-09-20 12:10:43No200 Lbs5 ft11NoNoNo1Pro & Farm1,075,000$0$0$NoLien
Taylor Beck (contrat à 1 volet)Milwaukee (NSH)LW/RW301991-05-13No210 Lbs6 ft2NoNoYes3Pro & Farm800,000$8,000$0$No800,000$800,000$Lien
Thomas GreissMilwaukee (NSH)G351986-01-29 23:37:02No221 Lbs6 ft0NoNoNo2Pro & Farm1,250,000$0$0$No1,250,000$
Vladimir SobotkaMilwaukee (NSH)LW/RW331987-07-02No208 Lbs5 ft11NoNoNo1Pro & Farm775,000$0$0$No
Vladislav KamenevMilwaukee (NSH)C/LW/RW241996-08-12Yes198 Lbs6 ft2NoNoNo1Pro & Farm800,000$0$0$NoLien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
1829.67207 Lbs6 ft11.56879,167$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Micheal Ferland32122
2Alan QuineChristian FischerTaylor Beck30122
3Antoine RousselNick CousinsBrett Ritchie28122
4Jordan NolanLinden Vey10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Brett KulakJoe Morrow36122
2Radim SimekJason Demers34122
3Matt HunwickLinden Vey30122
4Brett KulakJoe Morrow0122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Micheal Ferland60122
2Alan QuineChristian FischerTaylor Beck40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Brett KulakJoe Morrow60122
2Radim SimekJason Demers40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
160122
2Micheal FerlandChristian Fischer40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Brett KulakJoe Morrow60122
2Radim SimekJason Demers40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
160122Brett KulakJoe Morrow60122
240122Radim SimekJason Demers40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
160122
2Micheal FerlandChristian Fischer40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Brett KulakJoe Morrow60122
2Radim SimekJason Demers40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Micheal FerlandBrett KulakJoe Morrow
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Micheal FerlandBrett KulakJoe Morrow
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Nick Cousins, Brett Ritchie, Antoine RousselNick Cousins, Brett RitchieAntoine Roussel
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Matt Hunwick, Radim Simek, Jason DemersMatt HunwickRadim Simek, Jason Demers
Tirs de pénalité
, , Micheal Ferland, Christian Fischer, Alan Quine
Gardien
#1 : , #2 : Thomas Greiss


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Springfield624000001520-531200000811-33120000079-240.33315284310724219659605126258698610223417.39%33875.76%010722547.56%13630045.33%479847.96%154105160508542
Total624000001520-531200000811-33120000079-240.33315284310724219659605126258698610223417.39%33875.76%010722547.56%13630045.33%479847.96%154105160508542
_Since Last GM Reset624000001520-531200000811-33120000079-240.33315284310724219659605126258698610223417.39%33875.76%010722547.56%13630045.33%479847.96%154105160508542
_Vs Conference624000001520-531200000811-33120000079-240.33315284310724219659605126258698610223417.39%33875.76%010722547.56%13630045.33%479847.96%154105160508542
_Vs Division624000001520-531200000811-33120000079-240.33315284310724219659605126258698610223417.39%33875.76%010722547.56%13630045.33%479847.96%154105160508542

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
64L1152843196258698610210
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
62400001520
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
3120000811
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
312000079
Derniers 10 matchs
WLOTWOTL SOWSOL
240000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
23417.39%33875.76%0
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
596051267242
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
10722547.56%13630045.33%479847.96%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
154105160508542


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
2 - 2022-11-256Milwaukee2Springfield3ALSommaire du match
4 - 2022-11-2614Milwaukee2Springfield4ALSommaire du match
6 - 2022-11-2722Springfield2Milwaukee3BWXSommaire du match
8 - 2022-11-2830Springfield4Milwaukee1BLSommaire du match
10 - 2022-11-2938Milwaukee3Springfield2AWXSommaire du match
12 - 2022-11-3046Springfield5Milwaukee4BLSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets5030
Assistance5,0082,519
Assistance PCT83.47%83.97%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
38 2509 - 83.63% 146,687$440,060$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
0$ 1,502,500$ 1,502,500$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
0$ 0$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 0$ 0$




Milwaukee Leaders statistiques (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Sonny Milano80374077-622311135010.57%4156219.531512277710117249.6600.9916
2Mason Marchment7624517515781331162868.39%5146519.29316196400002147.8901.0206
3Ryan Donato80234669-732911532509.20%12159419.93717244701102149.3300.8705
4Sean Walker8210576735677731855.41%117196523.97718251190000010.00%10.6800
5Charles Hudon822338611326391322329.91%9148618.12714215000002150.5700.8233

Milwaukee Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Sergei Bobrovsky58282730.9053.09345712117818710100.76913

Milwaukee Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison régulière
2082324002233262286-2441132101222117151-34411919010111451351079262457719129978807278094487993048269176493515333646918.96%3868278.76%21598316850.44%1401307445.58%614133346.06%1988135619116171061534
Total Saison régulière82353407303260269-941191603102133127641161804201127142-1590260456716057499807264986092183444283881484813903457120.58%3696582.38%31487305248.72%1479312147.39%655131149.96%1917128119726221072533
Séries éliminatoires
Total Séries éliminatoires624000001520-531200000811-33120000079-2415284310724219659605126258698610223417.39%33875.76%010722547.56%13630045.33%479847.96%154105160508542

Milwaukee Leaders statistiques (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Milwaukee Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA